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Filter Banks

Christopher M. Brislawn
(final corrections, 8/6/13)

Abstract The polyphase-with-advance matrix representations of whole-sample
symmetric (WS) unimodular filter banks form a multiplicative matrix Laurent poly-
nomial group. Elements of this group can always be factored into lifting matrices
with half-sample symmetric (HS) off-diagonal lifting filters; such linear phase lift-
ing factorizations are specified in the ISO/IEC JPEG 2000 image coding standard.
Half-sample symmetric unimodular filter banks do not form a group, but such filter
banks can be partially factored into a cascade of whole-sample antisymmetric (WA)
lifting matrices starting from a concentric, equal-length HS base filter bank. An al-
gebraic framework called a group lifting structure has been introduced to formalize
the group-theoretic aspects of matrix lifting factorizations. Despite their pronounced
differences, it has been shown that the group lifting structures for both the WS and
HS classes satisfy a polyphase order-increasing property that implies uniqueness
(“modulo rescaling”) of irreducible group lifting factorizations in both group lifting
structures. These unique factorization results can in turn be used to characterize the
group-theoretic structure of the groups generated by the WS and HS group lifting
structures.

Key words: Lifting, Filter bank, Linear phase filter, Group theory, Group lift-
ing structure, JPEG 2000, Wavelet, Polyphase matrix, Unique factorization, Matrix
polynomial

1 Introduction

Lifting [22, 23, 9] is a general technique for factoring the polyphase matrix rep-
resentation of a perfect reconstruction multirate filter bank into elementary matri-
ces over the Laurent polynomials. As one might expect of a technique as univer-
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sal as elementary matrix factorization, lifting has proven extremely useful for both
theoretical investigations and practical applications. For instance, lifting forms the
basis for specifying discrete wavelet transforms in the ISO/IEC JPEG 2000 stan-
dards [12, 13].

In addition to providing a completely general mathematical framework for stan-
dardizing discrete wavelet transforms, lifting also provides a cascade structure for
reversible filter banks—nonlinear implementations of linear filter banks that furnish
bit-perfect invertibility in fixed-precision arithmetic [5, 19, 26, 6]. Reversibility al-
lows digital communications systems to realize the efficiency and scalability of sub-
band coding while also providing the option of lossless transmission, a key feature
that made lifting a particularly attractive choice for the JPEG 2000 standard.

The author became acquainted with lifting while serving on the JPEG 2000 stan-
dard, and he was struck by the group-theoretic flavor of the subject. After com-
pleting his standards committee work, he began studying the lifting structure of
two-channel linear phase FIR filter banks in depth, leading to the publications out-
lined in the present paper. In spite of its universality, lifting is not particularly well-
suited for analyzing paraunitary filter banks because, as discussed in [1, Section IV],
lifting matrices are never paraunitary. This means lifting factorization takes place
outside of the paraunitary group, whereas we shall show that lifting factorization
can be defined to take place entirely within the group of whole-sample symmet-
ric (WS, or odd-length linear phase) filter banks by decomposing WS filter banks
into linear phase lifting steps. This allows us to prove both existence and (rather
surprisingly) uniqueness of “irreducible” WS group lifting factorizations. One con-
sequence of this unique factorization theory is that we can characterize the group-
theoretic structure of the unimodular WS filter bank group up to isomorphism using
standard group-theoretic constructs.

Besides WS filter banks, there is also a class of half-sample symmetric (HS, or
even-length linear phase) filter banks. The differences between the group-theoretic
structure of WS and HS filter banks are striking. For instance, HS filter banks do
not form a matrix group, but linear phase “partial” lifting factorizations partition
the class of unimodular HS filter banks into cosets of a particular matrix group gen-
erated by whole-sample antisymmetric lifting filters. The complete group-theoretic
classification of unimodular HS filter banks is still incomplete as of this writing but
comprises an extremely active area of research by the author.

The present paper is an expository overview of recent research [4, 1, 2, 3]. It
is targeted at a mathematical audience that has at least a passing familiarity with
elementary group theory and with the connections between wavelet transforms and
multirate filter banks.

1.1 Perfect Reconstruction Filter Banks

This paper studies two-channel multirate digital filter banks of the form shown
in Figure 1 [7, 8, 24, 25, 21, 15]. We only consider systems in which both the
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Fig. 1 Two-channel perfect reconstruction multirate filter bank.

analysis filters {H0(z), H1(z)} and the synthesis filters {G0(z), G1(z)} are lin-
ear translation-invariant (or time-invariant) finite impulse response (FIR) filters. A
system like that in Figure 1 is called a perfect reconstruction multirate filter bank
(frequently abbreviated to just “filter bank” in this paper) if it is a linear translation-
invariant system with a transfer function satisfying

X̂(z)

X(z)
= az−d (1)

for some integer d ∈ Z and some constant a 6= 0.
FIR filters are written in the transform domain as Laurent polynomials,

F (z) ≡
b∑

n=a

f(n) z−n ∈ C
[
z, z−1

]
,

with impulse response f(n). The support interval of an FIR filter, denoted

supp_int(F ) ≡ supp_int(f) ≡ [a, b] ⊂ Z, (2)

is the smallest closed interval of integers containing the support of the filter’s im-
pulse response or, equivalently, the largest closed interval for which f(a) 6= 0 and
f(b) 6= 0. If supp_int(f) = [a, b] then the order of the filter is

order(F ) ≡ b− a. (3)

1.2 The Polyphase-with-Advance Representation

It is more efficient to compute the decimated output of a filter bank like the one in
Figure 1 by splitting the signal into even- and odd-indexed subsequences,

xi(n) ≡ x(2n+ i), i = 0, 1; X(z) = X0(z2) + z−1X1(z2). (4)

The polyphase vector form of a discrete-time signal is defined to be
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x(n) ≡
[
x0(n)
x1(n)

]
; X(z) ≡

[
X0(z)
X1(z)

]
. (5)

The analysis polyphase-with-advance representation of a filter [4, equation (9)] is

fj(n) ≡ f(2n− j), j = 0, 1; F (z) = F0(z2) + zF1(z2).

Its analysis polyphase vector representation is

F (z) ≡
[
F0(z)
F1(z)

]
=

d∑
n=c

f(n) z−n, (6)

f(n) ≡
[
f0(n)
f1(n)

]
with f(c), f(d) 6= 0. (7)

Since we generally work with analysis filter bank representations, “polyphase”
will mean “analysis polyphase-with-advance.” The polyphase filter (6), (7) has the
polyphase support interval

supp_int(f) ≡ [c, d], (8)

which differs from the scalar support interval (2) for the same filter. The polyphase
order of (6) is

order(F ) ≡ d− c . (9)

These definitions generalize for FIR filter banks, {H0(z), H1(z)}. Decompose
each filter Hi(z) into its polyphase vector representation Hi(z) as in (6) and form
the polyphase matrix

H(z) ≡
[
HT

0 (z)

HT
1 (z)

]
=

d∑
n=c

h(n) z−n, (10)

h(n) ≡
[
hT0 (n)

hT1 (n)

]
with h(c), h(d) 6= 0. (11)

Bold italics denote column vectors and bold roman (upright) fonts denote matrices.
The polyphase support interval of the filter bank in (10), (11) is defined to be

supp_int(h) ≡ [c, d], (12)

and the polyphase order is defined to be

order(H) ≡ d− c. (13)

With this notation, the output of the analysis bank in Figure 1 can be written

Y (z) = H(z)X(z).
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Fig. 2 The polyphase-with-advance representation of a two-channel multirate filter bank.

An analogous synthesis polyphase matrix representation, G(z), can be defined for
the synthesis filter bank {G0(z), G1(z)}; see [4, Section II-A].

The block diagram for this matrix-vector filter bank representation, which we call
the polyphase-with-advance representation [4], is shown in Figure 2. The polyphase
representation transforms the non-translation-invariant analysis bank of Figure 1
into a demultiplex operation, x(k) 7→ x(n), followed by a linear translation-
invariant operator acting on vector-valued signals. The polyphase representation
therefore reduces the study of multirate filter banks to the study of invertible transfer
matrices over the Laurent polynomials.

Since Laurent monomials are units, invertibility of H(z) over C[z, z−1] is equiv-
alent to

|H(z)| ≡ det H(z) = ǎz−ď; ǎ 6= 0, ď ∈ Z. (14)

ď is called the determinantal delay of H(z) and ǎ is called the determinantal ampli-
tude. A filter bank satisfying (14) is called an FIR perfect reconstruction (PR) filter
bank [24]. It was noted in [4, Theorem 1] that the family F of all FIR PR filter banks
forms a nonabelian matrix group, called the FIR filter bank group. The unimodular
group, N, is the normal subgroup of F consisting of all matrices of determinant 1,

|H(z)| = 1 . (15)

The unimodular group can also be regarded as SL(2, C
[
z, z−1

]
).

1.3 Linear Phase Filter Banks

It is easily shown [4, eqn. (20)] that a discrete-time signal is symmetric about one
of its samples, x(i0), if and only if its polyphase vector representation (5) satisfies

X(z−1) = zi0Λ(z)X(z), where Λ(z) ≡ diag(1, z−1). (16)

We say a signal satisfying (16) is whole-sample symmetric (WS) about i0 ∈ Z. Sim-
ilarly, a discrete-time signal is half-sample symmetric (HS) about an odd multiple
of 1/2 (indexed by i0 ∈ Z/2) if and only if



6 C.M. Brislawn

h0(n)h0(n)
(a)

h1(n) h1(n)

(b)

Fig. 3 (a) Whole-sample symmetric filter bank. (b) Half-sample symmetric filter bank.

X(z−1) = z(2i0−1)/2JX(z), where J ≡
[

0 1
1 0

]
. (17)

Analogous characterizations of whole- and half-sample antisymmetry (abbreviated
WA and HA, respectively) are obtained by putting minus signs in (16) and (17).
Real-valued discrete-time signals (or filters) possessing any of these symmetry prop-
erties are called linear phase signals (filters).

It was proven in [16] that the only nontrivial classes (classes with at least one
nontrivial real degree of freedom) of two-channel FIR PR linear phase filter banks
are the whole- and half-sample symmetric classes shown in Figure 3. Arbitrary com-
binations of symmetry are not necessarily compatible with invertibility; e.g., if both
filters have odd lengths then both must be symmetric (WS). In an even-length fil-
ter bank, one filter must be symmetric (HS) while the other must be antisymmetric
(HA). It was also proven in [16] that the sum of the impulse response lengths must
be a multiple of 4, so it is possible for HS (but not WS) filter banks to have filters of
equal lengths, as shown in Figure 3.

Linear phase properties of filter banks are also straightforward to characterize in
the polyphase domain [4, Section III]. The group delay [17] of a linear phase FIR
filter is equal to the midpoint (or axis of symmetry) of the filter’s impulse response.
Let di denote the group delay of hi for i = 0, 1.

Lemma 1 ([4], Lemma 2). A real-coefficient FIR transfer matrix H(z) is a WS
analysis filter bank with group delays d0 and d1 if and only if

H(z−1) = diag(zd0 , zd1)H(z)Λ(z−1). (18)

If H(z) satisfies (14) then the delay-minimized WS filter bank normalization

d0 = 0, d1 = −1 (19)

ensures that the determinantal delay, ď = (d0 +d1 + 1)/2, is zero and (18) becomes
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H(z−1) = Λ(z)H(z)Λ(z−1). (20)

The analogous delay-minimized HS filter bank normalization is

d0 = −1/2 = d1. (21)

Both filters have the same axis of symmetry, as in Figure 3(b); we call such filter
banks concentric. Delay-minimized HS filter banks are characterized by the relation

H(z−1) = LH(z)J where L ≡ diag(1, −1). (22)

We now see a striking difference between the algebraic properties of WS and
HS filter banks. Since Λ(z−1) = Λ−1(z), (20) says that Λ(z) intertwines H(z)
and H(z−1), so the set of all filter banks satisfying (20) (i.e., the set of all delay-
minimized WS filter banks) forms a multiplicative group. In sharp contrast, filter
banks satisfying (22) do not form a group.

Definition 1 ([1], Definition 8). The unimodular WS group, W, is the group of all
real FIR transfer matrices that satisfy both (15) and (20).

Definition 2 ([1], Definition 9). The unimodular HS class, H, is the set of all real
FIR transfer matrices that satisfy both (15) and (22).

2 Lifting Factorization of Linear Phase Filter Banks

We now define lifting and apply it to linear phase filter banks, focusing on the prob-
lem of factoring linear phase filter banks into linear phase lifting steps.

2.1 Lifting Factorizations

Daubechies and Sweldens [9] used the Euclidean algorithm for C[z, z−1] to prove
that any unimodular FIR transfer matrix can be decomposed into a lifting factoriza-
tion (or lifting cascade) of the form

H(z) = DK SN−1(z) · · ·S1(z) S0(z) . (23)

The diagonal matrix DK ≡ diag(1/K, K) is a unimodular gain-scaling matrix
with scaling factor K 6= 0. The lifting matrices Si(z) are upper- or lower-triangular
with ones on the diagonal and a lifting filter, Si(z), in the off-diagonal position.

In the factorization corresponding to Figure 4, the lifting matrix for the step S0(z)
(which is a lowpass update) is upper-triangular, and the matrix for the second step
(a highpass update) is lower-triangular. For example, the Haar filter bank

H0(z) = (z + 1)/2, H1(z) = z − 1, (24)
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Fig. 4 Two-step lifting representation of a unimodular filter bank.

has a unimodular polyphase representation with two different lifting factorizations,

Hhaar(z) ≡
[

1/2 1/2
−1 1

]
=

[
1/2 0
0 2

] [
1 0
−1/2 1

] [
1 1
0 1

]
(25)

=

[
1 1/2
0 1

] [
1 0
−1 1

]
. (26)

Factorization (25) fits the ladder structure of Figure 4 with S0(z) = 1, S1(z) =
−1/2, and K = 2. Factorization (26), on the other hand, begins with a highpass
lifting update and does not require a gain-scaling operation.

Definition 3 ([13], Annex G). The update characteristic of a lifting step (or lifting
matrix) is a binary flag, m = 0 or 1, indicating which polyphase channel is being
updated by the lifting step.

For instance, the update characteristic, m0, of the first lifting step in Figure 4 is
“lowpass,” coded with a zero (m0 = 0), while the update characteristic of the second
step is “highpass” (m1 = 1). The update characteristic mi is defined similarly for
each matrix Si(z) in a lifting cascade (23).

Next, we generalize (23) slightly to accommodate factorizations that lift one filter
bank to another. A partially factored lifting cascade,

H(z) = DK SN−1(z) · · ·S0(z) B(z), (27)

is an expansion relative to some base filter bank, B(z), with scalar filters B0(z) and
B1(z). We sometimes write such factorizations in recursive form:

H(z) = DK E(N−1)(z),

E(n)(z) = Sn(z) E(n−1)(z), 0 ≤ n < N, (28)
E(−1)(z) ≡ B(z).
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2.2 Whole-Sample Symmetric Filter Banks

The fact that delay-minimized WS filter banks form a group makes it easy to char-
acterize the lifting matrices that lift one delay-minimized WS filter bank to another,

F(z) = S(z) H(z). (29)

Lemma 2 ([4], Lemma 8). A lifting matrix, S(z), lifts a filter bank satisfying (20)
to another filter bank satisfying (20) if and only if S(z) also satisfies (20). An upper-
triangular lifting matrix satisfies (20) if and only if its lifting filter is half-sample
symmetric about 1/2. A lower-triangular lifting matrix satisfies (20) if and only if
its lifting filter is HS about −1/2.

Note that HS lifting filters with appropriate group delays form lifting matrices
that are WS filter banks. It is easy to show that the lifting filters symmetric about 1/2
form an additive group, P0, of Laurent polynomials and that the upper-triangular
lifting matrices with lifting filters in P0 form a multiplicative group, U. Similarly,
the lifting filters symmetric about −1/2 form an additive group, P1, and the lower-
triangular lifting matrices with lifting filters in P1 form a multiplicative group, L.

Given Lemma 2, it is natural to ask whether every filter bank in W has a lifting
factorization of the form (23) in which every lifting matrix Si(z) satisfies (20). The
answer is yes, and the proof is a constructive, order-reducing recursion that does not
rely on the Euclidean algorithm.

Theorem 1 ([4], Theorem 9). A unimodular filter bank, H(z), satisfies the delay-
minimized WS condition (20) if and only if it can be factored as

H(z) = DK SN−1(z) · · ·S1(z) S0(z), (30)

where each lifting matrix, Si(z), satisfies (20).

We refer to such decompositions as WS group lifting factorizations. This is the form
of lifting factorizations specified in [13, Annex G] for user-defined WS filter banks.

Definition 1 of the unimodular WS group, W, is independent of lifting, but we
need lifting to define reversible WS filter banks. Let Ur and Lr be the subgroups
of U and L with matrices whose lifting filters have dyadic coefficients of the form
k · 2n, k, n ∈ Z. Since gain-scaling operations are not generally invertible in fixed-
precision arithmetic, gain scaling is not used in reversible implementations.

Definition 4 ([1], Example 3). The group Wr of reversible unimodular WS filter
banks is defined to be the group of all transfer matrices H(z) generated by lifting
factorizations (30) where Si(z) ∈ Ur ∪ Lr and DK = I.
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2.3 Half-Sample Symmetric Filter Banks

Lifting factorization of HS filter banks is harder (i.e., more interesting) than lifting
factorization of WS filter banks, in part “because” HS filter banks do not form a
group. For instance, the characterization in Lemma 2 of lifting matrices that lift one
WS filter bank to another is equally valid for left lifts, as in (29), and right lifts in
which S(z) acts on the right. This fails badly for HS filter banks.

Theorem 2 ([4], Theorem 12). Suppose that H(z) is an HS filter bank satisfying
the concentric delay-minimized condition (22). If F(z) is right-lifted from H(z),

F(z) = H(z) S(z),

then F(z) can only satisfy (22) if S(z) = I and F(z) = H(z).

Fortunately, half-sample symmetry can be preserved by left-lifting operations.

Lemma 3 ([4], Lemma 10). If either H(z) or F(z) in (29) is an HS filter bank
satisfying the concentric delay-minimized condition (22), then the other filter bank
also satisfies (22) if and only if S(z) satisfies

S(z−1) = L S(z) L = S−1(z), (31)

which says that the lifting filter is whole-sample antisymmetric (WA) about 0.

WA lifting filters form an additive group, Pa, and the upper-triangular (resp.,
lower-triangular) lifting matrices with lifting filters in Pa form a group, U (resp., L).
In contrast to WS group lifting factorizations, concentric delay-minimized HS filter
banks never factor completely into WA lifting steps [4, Theorem 13]. The obstruc-
tion, which does not exist for WS filter banks, is the possibility that a reduced-order
intermediate HS filter bank in the factorization process will correspond to filters
H0(z) and H1(z) of equal lengths. Given a concentric equal-length HS filter bank,
it is never possible to reduce its order by factoring off a WA lifting step. This leaves
us with an incomplete lifting theory for unimodular HS filter banks.

Theorem 3 ([4], Theorem 14). A unimodular filter bank, H(z), satisfies the con-
centric delay-minimized HS convention (22) if and only if it can be decomposed
into a partially factored lifting cascade of WA lifting steps satisfying (31) and a
concentric equal-length HS base filter bank B(z) satisfying (22):

H(z) = SN−1(z) · · ·S0(z) B(z). (32)

There is no gain-scaling matrix, DK , in (32) since B(z) has been left unfactored.
One popular choice for the equal-length base filter bank in HS lifting construc-

tions is the Haar filter bank, which has a particularly simple lifting factorization (26).
The 2-tap/10-tap HS filter bank specified in JPEG 2000 Part 2 [13, Annex H.4.1.1.3]
is lifted from the Haar via a lower-triangular 4th-order WA lifting step. Another im-
portant example is the 6-tap/10-tap HS filter bank in [13, Annex H.4.1.2.1]. This
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filter bank was originally constructed by spectral factorization and has a lifting fac-
torization of the form H(z) = S(z)B(z), where S(z) is a second-order WA filter
and B(z) is an equal-length (6-tap/6-tap) HS filter bank.

Defining a class Hr of reversible HS filter banks is awkward; see [1, Example 5].

3 Uniqueness of Linear Phase Lifting Factorizations

In the last section we saw that every filter bank in the unimodular WS and HS classes
factors into linear phase lifting steps of an appropriate form. Lifting factorizations,
like other elementary matrix decompositions, are highly nonunique, and although
linear phase factorizations are more specialized than general lifting decompositions
there seems little reason a priori to expect them to be unique. There are, however, a
few trivial causes of nonuniqueness that we can exclude in an ad hoc fashion.

Definition 5 ([1], Definition 3). A lifting cascade (27) is irreducible if all lifting
steps are nontrivial (Si(z) 6= I) and there are no consecutive lifting matrices with
the same update characteristic, i.e., the lifting matrices strictly alternate between
lower- and upper-triangular.

Every lifting cascade can be simplified to an irreducible cascade using matrix
multiplication. Merely restricting attention to irreducible lifting cascades is far from
sufficient to ensure unique factorizations, as the two irreducible lifting factoriza-
tions of the Haar filter bank (25)–(26) show. To view nonuniqueness in a different
light, move the lifting steps from (26) over to the right end of (25) and use [9, Sec-
tion 7.3] to factor diag(1/2, 2) into lifting steps. This results in an irreducible lifting
factorization of the identity,

I =

[
1 0
−1 1

] [
1 −1
0 1

] [
1 0

1/2 1

] [
1 2
0 1

] [
1 0
−1/2 1

] [
1 1
0 1

] [
1 0
1 1

] [
1 −1/2
0 1

]
.

(33)
In a similar manner, any transfer matrix with two distinct irreducible lifting fac-

torizations gives rise to an irreducible factorization of the identity; cf. [1, Exam-
ple 1], which presents an irreducible, reversible lifting factorization of the identity
using linear phase (HS and HA) lifting filters. By constructing irreducible lifting
factorizations of the identity, it is possible to sharpen the universal lifting factoriza-
tion result of [9] into the following universal nonunique factorization result.

Proposition 1 ([1], Proposition 1). If G(z) and H(z) are any FIR perfect recon-
struction filter banks then G(z) can be irreducibly lifted from H(z) in infinitely
many different ways.
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3.1 Group Lifting Structures

In light of the rich supply of elementary matrices, this plethora of irreducible lift-
ing factorizations (almost all of which are useless for applications) results from our
failure to specify precisely which liftings we regard as useful. The JPEG committee
restricted the scope of [13, Annex G] to linear phase lifting factorizations of WS
filter banks because these were considered to be the most useful liftings for con-
ventional image coding, while [13, Annex H] was written to accommodate arbitrary
lifted filter banks for niche applications. Taking a cue from the JPEG committee, we
formalize a framework for specifying restricted universes of lifting factorizations.
Group theory turns out to be a convenient tool for this task.

3.1.1 Lifting Matrix Groups

As mentioned above, upper-triangular (resp., lower-triangular) lifting matrices form
multiplicative groups, U (resp., L), as do lifting matrices whose lifting filters are
restricted to additive groups of Laurent polynomials. This includes groups of filters
whose symmetry and group delay are given, such as the groups P0 and P1 of HS
lifting filters associated with Lemma 2. Define abelian group isomorphisms

υ, λ : C[z, z−1]→ N

that map a lifting filter S(z) ∈ C[z, z−1] to lifting matrices,

υ(S) ≡
[

1 S(z)
0 1

]
and λ(S) ≡

[
1 0

S(z) 1

]
. (34)

Definition 6 ([1], Definition 4). Given two additive groups of Laurent polynomials,
Pi < C[z, z−1], i = 0, 1, the groups U ≡ υ(P0) and L ≡ λ(P1) are called the
lifting matrix groups generated by P0 and P1.

3.1.2 Gain-Scaling Automorphisms

The unimodular gain-scaling matrices DK ≡ diag(1/K,K) also form an abelian
group with the product DKDJ = DKJ , which says that we have an isomorphism

D : R∗ ≡ R\{0}
∼=−→ D < N. (35)

D acts on N via inner automorphisms,

γKA(z) ≡ DK A(z) D−1
K , γK

[
a b
c d

]
=

[
a K−2b
K2c d

]
. (36)
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This is equivalent to the intertwining relation

DK A(z) = (γKA(z)) DK (37)

and makes γ : DK 7→ γK a homomorphism of D onto a subgroup γ(D) < Aut(N).

Definition 7 ([1], Definition 5). A group G < N is D-invariant if all of the inner
automorphisms γK ∈ γ(D) fix the group G; i.e., γKG = G, so that γK |G ∈ Aut(G).
This is equivalent to saying that D lies in the normalizer of G in N:

D < NN(G) ≡
{
A ∈ N : AGA−1 = G

}
.

For instance, when the lifting filter groups P0 and P1 are vector spaces it follows
easily from (36) that U ≡ υ(P0) and L ≡ λ(P1) are D-invariant matrix groups.

3.1.3 Definition of Group Lifting Structures

We now have the machinery needed to define a “universe” of lifting factorizations.
In the following, B denotes a set (not necessarily a group) of base filter banks from
which other filter banks are lifted in partially factored lifting cascades (27).

Definition 8 ([1], Definitions 6 and 7). A group lifting structure is an ordered four-
tuple,

S ≡ (D, U, L, B),

where D is a gain-scaling group, U and L are upper- and lower-triangular lifting
matrix groups, and B ⊂ N. The lifting cascade group, C, generated by S is the
subgroup of N generated by U and L:

C ≡ 〈U ∪ L〉 = {S1 · · ·Sk : k ≥ 1, Si ∈ U ∪ L} . (38)

The scaled lifting group, S, generated by S is the subgroup generated by D and C:

S ≡ 〈D ∪ C〉 = {A1 · · ·Ak : k ≥ 1, Ai ∈ D ∪ U ∪ L} . (39)

We say S is a D-invariant group lifting structure if U and L, and therefore C, are
D-invariant groups.

Given a group lifting structure, the universe of all filter banks generated by S is

DCB ≡ {DCB : D ∈ D, C ∈ C , B ∈ B} .

The statement “H has a (group) lifting factorization in S” means H ∈ DCB. H
has a lifting factorization in S if and only if it has an irreducible factorization in S.

The group lifting structure that characterizes the universe of WS group lifting
factorizations is defined as follows. The lifting matrix groups U ≡ υ(P0) and
L ≡ λ(P1) are determined by the groups P0 and P1 of HS lifting filters defined
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in Section 2.2. By Theorem 1 unimodular WS filter banks factor completely over U
and L, so we set B ≡ {I}. Since P0 and P1 are vector spaces, setting D ≡ D(R∗)
results in a D-invariant group lifting structure, SW ≡ (D,U,L,B). The conclusion
of Theorem 1 can be stated succinctly in terms of CW ≡ 〈U ∪ L〉 as

W = DCWB = DCW . (40)

The group lifting structure for delay-minimized HS lifting factorizations is more
complicated. The lifting matrix groups U ≡ υ(Pa) and L ≡ λ(Pa) are determined
by the group Pa of WA lifting filters defined in Section 2.3. Per Theorem 3, we
define BH to be the set of all concentric equal-length HS filter banks. Defining
D ≡ D(R∗) results in a D-invariant group lifting structure, SH ≡ (D,U,L,BH).
With CH ≡ 〈U ∪ L〉 the conclusion of Theorem 3 can be stated as

H = DCHBH . (41)

Group lifting structures SWr and SHr for reversible WS and HS filter banks are
defined in [1, Section IV].

3.2 Unique Irreducible Group Lifting Factorizations

We need one more hypothesis in addition to irreducibility to infer uniqueness of
group lifting factorizations within a given group lifting structure. The key is found
in the fact that nonunique lifting factorizations can be rewritten as irreducible lifting
factorizations of the identity, such as (33). Given a (nonconstant) lifting of the iden-
tity like [1, equation (21)], if some partial product E(n)(z) of lifting steps (28) has
positive polyphase order then the order of subsequent partial products must eventu-
ally decrease because the final product, I, has order zero. This suggests that lifting
structures that only generate “order-increasing” cascades will generate unique fac-
torizations, an idea that will be made rigorous in Theorem 4.

Definition 9 ([1], Definition 10). A lifting cascade (27) is strictly polyphase order-
increasing (usually shortened to order-increasing) if the order (13) of each interme-
diate polyphase matrix (28) is strictly greater than that of its predecessor:

order
(
E(n)

)
> order

(
E(n−1)

)
for 0 ≤ n < N .

A group lifting structure, S, is called order-increasing if every irreducible cascade
in CB is order-increasing.
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3.2.1 An Abstract Uniqueness Theorem

Theorem 4 ([1], Theorem 1). Suppose that S is a D-invariant, order-increasing
group lifting structure. Let H(z) be a transfer matrix generated by S, and suppose
we are given two irreducible group lifting factorizations of H(z) in DCB:

H(z) = DK SN−1(z) · · ·S0(z) B(z) (42)
= DK′ S′N ′−1(z) · · ·S′0(z) B′(z) . (43)

Then (42) and (43) satisfy the following three properties:

N ′ = N , (44)
B′(z) = Dα B(z) where α ≡ K/K ′, (45)
S′i(z) = γαSi(z) for i = 0, . . . , N − 1. (46)

If, in addition, B(z) and B′(z) share a nonzero matrix entry at some point z0 then
the factorizations (42) and (43) are identical; i.e., K ′ = K, B′(z) = B(z), and

S′i(z) = Si(z) for i = 0, . . . , N − 1. (47)

It also follows that K ′ = K if either of the scalar base filters, B0(z) or B1(z),
shares a nonzero value with its primed counterpart; e.g., if the base filter banks
have equal lowpass DC responses.

The relationship described by (44)–(46) leads to the following definition.

Definition 10 ([1], Definition 11). Two factorizations of H(z) that satisfy (44)–(46)
are said to be equivalent modulo rescaling. If all irreducible group lifting factoriza-
tions of H(z) are equivalent modulo rescaling for every H(z) generated by S, we
say that irreducible factorizations in S are unique modulo rescaling.

3.2.2 Application to WS and HS Group Lifting Structures

Applying Theorem 4 is nontrivial, and verifying the order-increasing property is the
hardest aspect of the whole theory. The key lemma for proving the order-increasing
property for the WS and HS group lifting structures is the following result.

Lemma 4 ([2], Lemma 2). Let S be a group lifting structure satisfying the follow-
ing two polyphase vector conditions.

1. For all B(z) ∈ B, the polyphase support intervals (8) for the base polyphase
filter vectors are equal:

supp_int(b0) = supp_int(b1). (48)

2. For all irreducible lifting cascades in CB, the polyphase support intervals (8)
for the intermediate polyphase filter vectors satisfy the proper inclusions
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supp_int
(
e

(n)
1−mn

)
 supp_int

(
e(n)
mn

)
for n ≥ 0. (49)

It then follows that S is strictly polyphase order-increasing.

Hypothesis (48) is the correct answer to the ill-posed question, “What do all
concentric equal-length HS base filter banks have in common with the lazy wavelet
filter bank, I?” This was one of the last pieces of the uniqueness puzzle to be solved
and unified the uniqueness proofs for the WS and HS cases.

Theorem 5 ([2], Theorem 1). Let SW and SWr
be the group lifting structures

defined in [1, Section IV-A]. Every filter bank in W has a unique irreducible lifting
factorization in SW and every filter bank in Wr has a unique irreducible lifting
factorization in SWr

.

Corollary 1 ([2], Corollary 1). A delay-minimized unimodular WS filter bank can
be specified in JPEG 2000 Part 2 Annex G syntax in one and only one way.

The proof of Theorem 5 involves deriving the support-interval covering prop-
erty (49) needed to invoke Lemma 4 and Theorem 4. The support-interval covering
property results from the following tedious lemma based on the recursive formula-
tion of lifting (28). The update characteristic of Sn(z) (Definition 3) is mn and the
support radius of a filter is the radius of its support interval,

supp_rad(f) ≡
⌊
b− a+ 1

2

⌋
, where [a, b] = supp_int(f). (50)

Lemma 5 ([2], Lemma 5). Let SN−1(z) · · ·S0(z) ∈ CW be an irreducible cascade
with intermediate scalar filters E(n)

i (z), i = 0, 1. Let r(n)
i be the support radius of

e
(n)
i , and let t(n) ≥ 1 be the support radius of the HS lifting filter Sn(z). Then

supp_int
(
e

(n)
i

)
is centered at −i,

supp_int
(
e

(n)
i

)
=
[
−r(n)

i − i, r(n)
i − i

]
, i = 0, 1,

where
r(n)
mn

= r
(n)
1−mn

+ 2t(n) − 1 for n ≥ 0, (51)

r
(n)
1−mn

= r(n−1)
mn

+ 2t(n−1) − 1 for n ≥ 1, (52)

with r(0)
1−m0

= r
(−1)
1−m0

= 0.

There is a similar unique factorization result for unimodular HS filter banks.

Theorem 6 ([2], Theorem 2). Let SH and SHr
be the group lifting structures de-

fined in [1, Section IV-B]. Every filter bank in H has an irreducible group lifting
factorization in SH that is unique modulo rescaling. Every filter bank in Hr has a
unique irreducible group lifting factorization in SHr

.
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Fig. 5 Commutative diagram
defining a free product of the
groups Gi.

Gi P

H

i

fi
φ

4 Group-Theoretic Structure of Linear Phase Filter Banks

We can now characterize the group-theoretic structure of the groups generated by
a D-invariant, order-increasing group lifting structure. First we consider the lifting
cascade group, C, which only depends on U and L, after which we consider the
structure generated by scaling operations in the scaled lifting group, S.

4.1 Free Product Structure of Lifting Cascade Groups

Recall the definition of free products in the category of groups.

Definition 11 ([11, 18]). Let {Gi : i ∈ I} be an indexed family of groups, and let
P be a group with homomorphisms i : Gi → P. Then P is called a free product
of the groups Gi if and only if, for every group H and family of homomorphisms
fi : Gi → H, there exists a unique homomorphism φ : P→ H such that φ ◦ i = fi
for all i ∈ I . This is equivalent to saying that there exists a unique homomorphism
φ such that the diagram in Figure 5 commutes for all i ∈ I .

Defining free products via the universal mapping property in Figure 5 means
free products are coproducts in the category of groups and are therefore uniquely
determined (up to isomorphism) by their generators Gi [11, Theorem I.7.5], [18,
Theorem 11.50]. There is a constructive procedure (the “reduced word construc-
tion” [11, 18]) that generates a canonical realization of the free product of an arbi-
trary family of groups. Standard notation for free products is P = G1∗G2∗ · · · .

The intuition behind Theorem 7 (below) is the identification of irreducible group
lifting factorizations over U and L with the group of reduced words over the alphabet
U ∪ L, which is the canonical realization of U∗L. The reduced word construction
of U∗L is a somewhat technical chore when done rigorously, and it would be a
messy affair at best to write down and verify an isomorphism between the group of
reduced words over U∪L and a lifting cascade group in one-to-one correspondence
with a collection of irreducible group lifting factorizations. For this reason the proof
presented in [3] avoids the details of the reduced word construction and instead uses
uniqueness of irreducible group lifting factorizations to show that C satisfies the
categorical definition of a coproduct.
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Fig. 6 Universal mapping
property for the coproduct
C ∼= U∗L.

U C

H

U

fU
φ

L
L

fL

4.1.1 Lifting Cascade Groups are Free Products of U and L

An easy lemma is needed to deal with group lifting structures whose irreducible
group lifting factorizations are only unique modulo rescaling.

Lemma 6 ([3], Lemma 1). If (D,U,L,B) is a D-invariant, order-increasing group
lifting structure with lifting cascade group C ≡ 〈U ∪ L〉 then irreducible group lift-
ing factorizations in C are unique, even if irreducible group lifting factorizations of
filter banks in DCB are only unique modulo rescaling.

Lemma 6 ensures that all D-invariant, order-increasing group lifting structures
satisfy the hypotheses of the following theorem, whose proof consists of showing
that C satisfies the universal mapping property in Figure 6.

Theorem 7 ([3], Theorem 1). Let U and L be upper- and lower-triangular lifting
matrix groups with lifting cascade group C ≡ 〈U ∪ L〉. If every element of C has a
unique irreducible group lifting factorization over U ∪ L then C is isomorphic to
the free product of U and L:

C ∼= U∗L .
This free product structure, C ∼= U∗L, is one of the conditions that are required

for C to be a free group.

Theorem 8 ([3], Theorem 2). Let C ≡ 〈U ∪ L〉 be a lifting cascade group over
nontrivial lifting matrix groups U and L. C is a free group (necessarily on two
generators) if and only if U and L are infinite cyclic groups and C ∼= U∗L.

4.2 Semidirect Product Structure of Scaled Lifting Groups

Consider the interaction between the gain-scaling group D and the lifting cascade
group C in a scaled lifting group, S ≡ 〈D ∪ C〉. As we have seen, D acts on C via
inner automorphisms so it is not surprising that, under suitable hypotheses, S has
the structure of a semidirect product, whose definition we now review.

Definition 12 ([14, 11, 18]). Let G be a (multiplicative) group with identity element
1G and subgroups K and Q. G is an (internal) semidirect product of K by Q, denoted
G = QnK, if the following three axioms are satisfied.
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G = 〈K ∪ Q〉 (K and Q generate G) (53)
KC G (K is a normal subgroup of G) (54)
K ∩ Q = 1G (the trivial group) (55)

If G = QnK then 〈K ∪ Q〉 = QK and such product representations, g = qk for
g ∈ G = QK, are unique.

For groups K and Q that are not subgroups of a common parent, a similar con-
struction called an external semidirect product, denoted G = Qnθ K, can be per-
formed whenever we have an automorphic group action θ : Q→ Aut(K).

4.2.1 Scaled Lifting Groups are Semidirect Products of C by D

Let S = (D, U, L, B) be a group lifting structure with lifting cascade group C and
scaled lifting group S. The following theorem has the same hypotheses as those of
Theorem 4, but rather than invoking the unique factorization theorem the argument
in [3] proves Theorem 9 directly from the hypotheses.

Theorem 9 ([3], Theorem 3). If S is a D-invariant, order-increasing group lifting
structure then S is the internal semidirect product of C by D:

S = Dn C.

This result can be combined with Theorem 7 to yield a complete group-theoretic
description of the group of unimodular WS filter banks,

W = SW = DCW.

Corollary 2 ([3], Corollary 2). Let SW ≡ (D,U,L, I) be the group lifting struc-
ture for the unimodular WS group, W, defined in [1, Section IV]. The group-
theoretic structure of W is

W ∼= Dnθ (U∗L).

A similar characterization is possible for HS filter banks. While H is not a group,
the product representation

H = DCHBH = SHBH, (56)
BH ≡ {B ∈ H : order(B0) = order(B1)} , (57)

exhibits H as a collection of right cosets, SHB, of SH by elements of BH. These
cosets do not partition H, however, since they are not disjoint: B′ ≡ DαB ∈ BH

implies SHB = SHB′. To obtain a nonredundant partition of H into cosets, we can
either eliminate scaling matrices (i.e., form cosets of CH rather than of SH) or else
normalize the elements of BH.
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Corollary 3 ([3], Corollary 3). Let SH ≡ (D,U,L,BH) be the group lifting struc-
ture for the unimodular HS class, H, defined in [1, Section IV]. The group-theoretic
structure of SH is

SH ∼= Dnθ (U∗L),

and H can be partitioned into disjoint right cosets (but not left cosets) of either CH

or SH:

H =
⋃
{CHB : B ∈ BH} (58)

=
⋃
{SHB : B ∈ B′H} , (59)

where B′H is given by, e.g.,

B′H ≡ {B ∈ BH : B0(1) = 1} . (60)

Scaled lifting groups with the structure S ∼= Dnθ (U∗L) have formal similar-
ities [3, Section IV] to other examples in the mathematical literature of continuous
groups with dilations, such as homogeneous groups [10, 20]. Unlike homogeneous
groups, however, scaled lifting groups are neither nilpotent nor finite-dimensional,
so scaled lifting groups at present appear to be a new addition to the realm of con-
tinuous groups with scaling automorphisms.

5 Conclusions

We have surveyed recent results characterizing the group-theoretic structure of the
two principal classes of two-channel linear phase perfect reconstruction unimodular
filter banks, the whole-sample symmetric and the half-sample symmetric classes.
WS filter banks presented in the polyphase-with-advance representation naturally
form a multiplicative subgroup, W, of the group of all unimodular matrix Laurent
polynomials. Although the class H of unimodular HS filter banks does not form a
group, lifting factorization theory shows that HS filter banks form cosets of a par-
ticular group generated by unimodular diagonal gain-scaling matrices and lifting
matrices with whole-sample antisymmetric lifting filters. An algebraic framework
known as a group lifting structure has been introduced for formalizing the group-
theoretic structure of lifting factorizations, and it has been shown that the group lift-
ing structures for WS (respectively, HS) filter banks satisfy a nontrivial polyphase
order-increasing property that implies uniqueness of irreducible group lifting fac-
torizations.

These unique factorization results have in turn been used to characterize the
structure (up to isomorphism) of the lifting cascade group and the scaled lifting
group associated with each of these classes of linear phase filter banks. Specifically,
in both cases the lifting cascade group generated by the linear phase lifting ma-
trices is the free product of the upper- and lower-triangular lifting matrix groups,
C ∼= U∗L. Also in both cases, the scaled lifting group generated by the lifting cas-
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cade group and the diagonal gain-scaling matrix group has the structure of a semidi-
rect product, S = DC ∼= Dnθ (U∗L). In the case of WS filter banks this directly
furnishes the structure of the unimodular WS group, W, since W = SW. In the case
of HS filter banks, H is partitioned by the family of all right cosets of CH by con-
centric equal-length base HS filter banks. Alternatively, H is also partitioned by the
family of all right cosets of SH by concentric equal-length base HS filter banks with
unit lowpass DC response.
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